Premotor interneurons in the local control of stepping motor output for the stick insect single middle leg.

نویسندگان

  • Géraldine von Uckermann
  • Ansgar Büschges
چکیده

In insect walking systems, nonspiking interneurons (NSIs) play an important role in the control of posture and movement. As such NSIs are known to contribute to state-dependent modifications in processing of proprioceptive signals from the legs. For example, NSIs process a flexion of the femur-tibia (FTi) joint signaled by the femoral chordotonal organ (fCO) such that the stance phase motor output is reinforced in the active locomotor system. This phenomenon representing a reflex reversal is the first part of the "active reaction" (AR) and was hypothesized to functionally represent a major control feature by which sensory feedback supports stance generation. As NSIs are known to contribute to the AR, the question arises, whether they serve similar functions during stepping and whether the AR is generally part of the control system for walking. We studied these issues in vivo, in a single leg preparation of Carausius morosus with the leg kinematics being confined to changes in one plane, along the coxa-trochanteral and the FTi-joint. Following kinematic analysis, identified NSIs (E1-E8, I1, I2, and I4) were recorded intracellularly during single leg stepping at different velocities. We detected clear similarities between the activity pattern of NSIs during single leg stepping and their responses to fCO-stimulation during the generation of the AR. This strongly supports the notion that the motor output generated during the AR reflects part of the control regime for stepping. Furthermore, our experiments revealed that alterations in stepping velocity result from modifications in the activity of the premotor NSIs involved in stance phase generation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intersegmental transfer of sensory signals in the stick insect leg muscle control system.

Intersegmental coordination during locomotion in legged animals arises from mechanical couplings and the exchange of neuronal information between legs. Here, the information flow from a single leg sense organ of the stick insect Cuniculina impigra onto motoneurons and interneurons of other legs was investigated. The femoral chordotonal organ (fCO) of the right middle leg, which measures posture...

متن کامل

Modulation of Membrane Potential in Mesothoracic Moto- and Interneurons During Stick Insect Front Leg Walking Authors:

During walking, maintenance and coordination of activity in leg motoneurons requires intersegmental signal transfer. In a semi-intact preparation of the stick insect we studied membrane potential modulations in mesothoracic (middle leg) motoneurons and local premotor non-spiking interneurons that were induced by stepping of a front leg on a treadmill. The activity in motoneurons ipsilateral and...

متن کامل

Modulation of membrane potential in mesothoracic moto- and interneurons during stick insect front-leg walking.

During walking, maintenance and coordination of activity in leg motoneurons requires intersegmental signal transfer. In a semi-intact preparation of the stick insect, we studied membrane potential modulations in mesothoracic (middle leg) motoneurons and local premotor nonspiking interneurons that were induced by stepping of a front leg on a treadmill. The activity in motoneurons ipsi- and contr...

متن کامل

Control of stepping velocity in a single insect leg during walking BY JENS

In the single middle leg preparation of the stick insect walking on a treadmill, the activity of flexor and extensor tibiae motor neurons and muscles, which are responsible for the movement of the tibia in stance and swing phases, respectively, was investigated with respect to changes in stepping velocity. Changes in stepping velocity were correlated with cycle period. There was a close correla...

متن کامل

Control of stepping velocity in a single insect leg during walking.

In the single middle leg preparation of the stick insect walking on a treadmill, the activity of flexor and extensor tibiae motor neurons and muscles, which are responsible for the movement of the tibia in stance and swing phases, respectively, was investigated with respect to changes in stepping velocity. Changes in stepping velocity were correlated with cycle period. There was a close correla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 102 3  شماره 

صفحات  -

تاریخ انتشار 2009